Shweta Instruments, 1, Vedkiran Apartment, Kamatwada, Ambad Link Road, Ambad, Nashik, Maharashtra Laboratory

Accreditation Standard ISO/IEC 17025: 2005

Certificate Number Page 1 of 4 CC-2324 (In lieu of C-0960)

Validity 01.08.2017 to 31.07.2019 Last Amended on 04.09.2017

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks				
	MECHANICAL CALIBRATION							
I.	DIMENSION (BASIC MEASURING INSTRUMENT, GAUGE ETC.)							
1.	Caliper ^{\$} (Vernier, Dial, Electronic)			Using Caliper Checker By Comparison Method				
	L.C: : 0.01mm [¢]	Up to 600 mm	18.0 μm					
2.	Height Gauge ^{\$} (Vernier, Dial & Electronic) L.C:: 0.01 mm [‡]	Up to 600 mm	16.0 µm	Using Caliper Checker and Slip Gauge By Comparison Method				
3.	Vernier Depth Gauge ^s L.C: : 0.01 mm	Up to 300 mm	15.0 µm	Using Caliper Checker and Slip Gauge By Comparison Method				
4.	External Micrometer ^{\$} (Vernier, Dial, Electronic) L.C:: 0.01 mm L.C:: 0.001 mm	Up to 400 mm Up to 300 mm	6.5 µm 3.0 µm	Using Slip Gauge Set By Comparison Method				
5.	Micrometer Setting Standard ^{\$}	Up to 375 mm	7.1 µm	Using Slip Gauge Set & Comparator With Stand By Comparison Method				
6.	Internal Micrometer-2 Points ^{\$} L.C:: 0.01 mm	Up to 250 mm	3.7 µm	Using ULM				

Shally Sharma Convenor

Avijit Das **Program Director**

Shweta Instruments, 1, Vedkiran Apartment, Kamatwada, Ambad Link Road, Ambad, Nashik, Maharashtra Laboratory

Accreditation Standard ISO/IEC 17025: 2005

Certificate Number Page 2 of 4 CC-2324 (In lieu of C-0960)

Validity 01.08.2017 to 31.07.2019 Last Amended on 04.09.2017

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
7.	Depth Micrometer ^{\$} L.C: : 0.001 mm	Up to 300 mm	3.0 µm	Using Slip Gauge Set By Comparison Method
8.	Dial Gauge - Plunger Type ^{\$} L.C: 0.001 mm	Up to 25 mm	3.0 µm	Using Dial Caliper Tester By Comparison Method
9.	Dial Gauge – Lever Type ^{\$} L.C: 0.001 mm	Up to 2.0 mm	2.6 µm	Using Dial Calibration Tester By Comparison Method
10.	Bore Gauge ^{\$} (For Transmission Accuracy) L.C: 0.001 mm	Up to 1.0 mm	4.0 μm	Using Dial Calibration Tester by Comparison Method
11.	Inside Micrometer ^{\$} L.C: 0.01 mm	5 mm to 30 mm	3.9 µm	Using Slip Gauge Set & Accessories Set by Comparison Method
12.	Dial Thickness Gauge ^{\$} L.C: 0.001 mm ^{\$}	Up to 25 mm	1.0 μm	Using Slip Gauge Set by Direct Comparison Method
13.	Pistol Caliper ^s L.C: 0.01mm	Up to 200 mm	6.0 µm	Using Slip Gauge Set by Direct/Comparison Method
14.	Dial Snap Gauge ^{\$} L.C: 0.001mm	Up to 150 mm	4.4 μm	Using Slip Gauge Set By Comparison Method
15.	Bevel Protractor ^{\$} L.C: 5 min	0°-90°-0°	4.6 min	Using Angle Gauge Block Comparison Method

Shally Sharma Convenor

Avijit Das **Program Director**

Shweta Instruments, 1, Vedkiran Apartment, Kamatwada, Ambad Link Road, Ambad, Nashik, Maharashtra Laboratory

Accreditation Standard ISO/IEC 17025: 2005

Certificate Number Page 3 of 4 CC-2324 (In lieu of C-0960)

Validity 01.08.2017 to 31.07.2019 Last Amended on 04.09.2017

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
16.	Degree Protractor ^{\$} L.C: 1°C	0°- 90°- 0°	35 min	Using Angle Gauge Block By Comparison Method
17.	Combination Set ^{\$} L.C: 1°C	0°-90°-0°	35 min	Using Angle Gauge Block By Comparison Method
18.	Engineer's Square ^{\$} (Squareness)	Up to 150 mm	11.0 μm	Using Slip Gauge Set & Cylindrical Square By Comparison Method
19.	Feeler Gauge/ Shims (Foils) Of Coating Thickness Gauge ^{\$}	Up to 2 mm	3.0 µm	Using Digital Micrometer By Comparison Method
20.	Plain Plug Gauge/ Measuring Pin /Width Gauge/Length Gauge ^s	Up to 300 mm	2.0 µm	Using ULM
21.	Thread Measuring Wires ^{\$}	0.17 mm to 6.350 mm	1.5 µm	Using ULM
22.	Plain Snap Gauge ^{\$}	Up to 2.0 mm > 2.0 mm to 300 mm	2.0 μm 2.0 μm	Using ULM
23.	Thread Plug Gauge ^{\$} (Effective Diameter Only)	Up to 100 mm	4.0 µm	Using FCDM, Cylindrical Setting Master & Thread Measuring Wire
24.	V-Block ^{\$} Parallelism Symmetricity Squareness	Up to 150 mm	9.0 μm 9.0 μm 10.0 μm	Using Master Cylinders Square/ Slip Gauge Set & Comparator
25.	Internal Plain Ring Gauge ^{\$}	3 mm to 300 mm	2.0 µm	Using ULM

Shally Sharma Convenor

Avijit Das **Program Director** Laboratory Shweta Instruments, 1, Vedkiran Apartment, Kamatwada, Ambad

Link Road, Ambad, Nashik, Maharashtra

Accreditation Standard ISO/IEC 17025: 2005

Certificate Number CC-2324 (In lieu of C-0960) Page 4 of 4

Validity 01.08.2017 to 31.07.2019 Last Amended on 04.09.2017

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
26.	Internal Thread Ring Gauge ^{\$}	3 mm to 100 mm	1.5 μm	Using ULM
27.	Holtest /Three Point Micrometer ^{\$} L.C: 0.001 mm	Up to 100 mm	4.5 μm	Using Setting Ring Set
28.	Cylindrical Setting Master ^{\$}	Up to 100 mm	1.6 μm	Using ULM
29.	Inside Caliper – Dial Type ^{\$} L.C: 0.01 mm	Up to 200 mm	5.0 μm	Using Caliper Checker, Slip Gauge & Accessories Set By Comparison Method
30.	Surface Plate*	3000 mm X 3000 mm	$4.6\sqrt{rac{L+W}{100}}$ µm	Using Precision Spirit Level of L.C: 0.01 mm/m
31.	Electronic Height Gauge* L.C: 0.1µm	Up to 600 mm	3.0 µm	Using Slip Gauge
II.	PRESSURE INDICATING DEVICES			
1.	Pressure Gauge#	Up to 0 to 700 kg/cm ² Up to 0 to 30 kg/cm ²	6.3 kg/cm ² 0.6 kg/cm ²	Using Digital Pressure Gauge by Comparison Method as per DKD R6-1

^{*} Measurement Capability is expressed as an uncertainty (±) at a confidence probability of 95%

Shally Sharma Avijit Das
Convenor Program Director

^{\$}Only in Permanent Laboratory

^{*}Only for Site Calibration

^{*}The laboratory is also capable for site calibration however, the uncertainty at site depends on the

prevailing actual environmental conditions and master equipment used.

^o Laboratory can also calibrate instruments/devices of coarser resolution / least count within the accredited range using same reference standard/ master equipment under the scope of accreditation.