Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka			
Accreditation Standard	ISO/IEC 17025: 2005			
Certificate Number	CC-2776	Page	1 of 6	
Validity	25.07.2018 to 24.07.2020	Last Amended on	-	

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks			
	MECHANICAL CALIBRATION						
1.	PRESSURE INDICATIN	IG DEVICES					
1.	Pressure-Hydraulic ^{\$} (Dial Pressure Gauge, Digital Pressure Gauges, Pressure Calibrator, Pressure Transducers and Pressure Transmitter with Indicators)	2 bar to 690 kg/cm ²	0.017 %	Using Hydraulic Dead Weight Tester based on DKD-R6-1			
2.	Pressure-Hydraulic [#] (Dial Pressure Gauge, Digital Pressure Gauges, Pressure Calibrator, Pressure Transducers and Pressure Transmitter with Indicators)	0 bar to 690 bar	0.11 %	Using Digital Pressure Calibrator 0-700 & Hydraulic Pump based on DKD-R6:1			
3.	Pressure-Pneumatic [#] (Dial Pressure Gauge, Digital Pressure Gauges, Pressure Calibrator, Pressure Transducers and Pressure Transmitter with Indicators)	0 bar to 30 bar	0.1 %	Using Pneumatic Pump & Digital Pressure Calibrator based on DKD-R6-1			

Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka			
Accreditation Standard	ISO/IEC 17025: 2005			
Certificate Number	CC-2776	Page	2 of 6	
Validity	25.07.2018 to 24.07.2020	Last Amended on	-	

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
II.	DIMENSION (BASIC	MEASURING INSTRUME	NT, GAUGE ETC.)	
1.	Digital Vernier ^{\$}	0 to 150 mm 0 to 300 mm 300 to 1000 mm	8 μm 12 μm 19 μm	Using 'K/O' Slip Gauge Set
2.	External Micrometer ^{\$}	0 to 25 mm	1.9 µm	Using 'K/O' Slip Gauge Set
III.	UTM, TENSION CRE	EP AND TORSION TESTI	NG MACHINE	
1.	Verification of Uniaxial Testing Machine [*]	Compression: 0.25 kN to 1 kN 1 kN to 100 kN Tension: 1 kN to 100 kN	0.3 % 0.2 % 0.2 %	Using : "0" Class load cells with digital indicator as per IS 1828 (Part – I)
IV.	SPEED AND ACCEL	ERATION		
1.	RPM indicator/Indicator of Centrifuge [*]	60 rpm to 1000 rpm 1000 rpm to 3000 rpm 3000 rpm to 5000 rpm	1.6% reading 1.1 % reading 1.1% reading	Using Digital Tachometer
V.	WEIGHING SCALE AND BALANCE			
1.	Non-Automatic Weighing Balance/Scale [#] d = 0.01 mg d = 0.001 g d = 0.01 g)	0 to 200 g 0 to 1 kg 0 to 5 kg	0.06 mg 4 mg 20 mg	UsingE1/E2Accuracy Class Standard Weights as per OIML-R-76-1

Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka			
Accreditation Standard	ISO/IEC 17025: 2005			
Certificate Number	CC-2776	Page	3 of 6	
Validity	25.07.2018 to 24.07.2020	Last Amended on	-	

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
VI.	WEIGHTS	<u> </u>		I
2.	Calibration of Weights ^{\$} (Class F1 Accuracy and Coarser)	1mg 2mg 5mg 10mg 20mg 50mg 100mg 200mg 500mg 1g 2g 5g 10g 20g 50g 100g 200g 500g 100g 200g 500g 1kg	0.02mg 0.02mg	Using Weights of Accuracy Class E1/E2/F1 based on OIMLR111-1ABBA Cycle Substitution Method
	and Coarser)	5kg	20mg	
VII.	VOLUME			
1.	Micro Pipette / Piston Pipette ^{\$}	10µlto100µl	2.60µl	Using Digital Balance and Distilled Water of known Density as per As per ISO 8655-6

Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka				
Accreditation Standard	ISO/IEC 17025: 2005				
Certificate Number	CC-2776	Page	4 of 6		
Validity	25.07.2018 to 24.07.2020	Last Amended on	-		

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
2.	Glass Pipette /	1ml to10ml	2.30µl	Using Digital Balance and
	Measuring ^{\$}	10ml to100ml	2.32µl	Distilled Water of known
	Cylinder/	100ml to200ml	3 µl	Density as per As per ISO
	Volumetric Flask	200ml to1000ml	13µl	4787

Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka		
Accreditation Standard	ISO/IEC 17025: 2005		
Certificate Number	CC-2776	Page	5 of 6
Validity	25.07.2018 to 24.07.2020	Last Amended on	-

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
		THERMAL	CALIBRATION	
I.	TEMPERATURE			
1.	PRT/RTD with / without indicator (Analog/Digital) Digital Thermometers/ Temperature indicators/ Controllers of bath, oven and chamber [#]	(-) 80°C to 100°C 100 °C to 300°C 300 °C to 650 °C	0.05 °C 0.07 °C 0.10 °C	Using SPRT, Liquid Bath , Dry Block Calibrator & Digital Thermometer readout by comparison method
2.	Thermocouples with/without indicator (Analog/Digital) Temperature recorders/ Temperature data logger with temperature sensors [#]	(-)80°C to 100°C 100 °C to 650°C 650 °C to1200 °C	0.06 °C 0.10 °C 1.90 °C	Using Standard R-Type Thermocouple with CJC Probe, SPRT, Liquid Bath, Dry Block Calibrator & Digital Thermometer readout by comparison method
3.	Liquid in Glass Thermometer ^{\$}	(-)40 °C to 200 °C 200 °C to 300 °C	0.05 °C 0.06 °C	Using SPRT , Liquid Bath & Digital Thermometer readout by comparison method

Laboratory	Hari Shankar Singhania Elastomer and Tyre Research Institute, Hasetri, Plot No. 437, Hebbal Industrial Area, Mysuru, Karnataka				
Accreditation Standard	ISO/IEC 17025: 2005				
Certificate Number	CC-2776	Page	6 of 6		
Validity	25.07.2018 to 24.07.2020	Last Amended on	-		

SI.	Quantity Measured / Instrument	Range/Frequency	*Calibration Measurement Capability (±)	Remarks
4.	Calibration of Heating Oven /Environmental Chamber/ Climatic Chamber / Furnace/ Freezer Temperature Uniformity Mapping* (Multi Position)	(-)40 °C to 250°C	0.50 °C	Using Calibrated RTDs(9 Nos.) with Multi Channel Data Acquisition System & DAQ Software by Multi Position Calibration Method
11.	SPECIFIC HEAT AND	HUMIDITY		
1.	Calibration of Relative humidity / Temperature Indicators of Humidity Chamber, Environmental Chamber, Climatic Chamber, Hygrometer, Humidity Sensors and Probes ^{\$}	15 to 95 % Rh at RT	0.85% Rh at RT	Using RH Calibrator, Rh/Temperature Sensor/ Probe with digital indicator By comparison Method

* Measurement Capability is expressed as an uncertainty (±) at a confidence probability of 95% ^{\$}Only in Permanent Laboratory ^{*}Only for Site Calibration

[#]The laboratory is also capable for site calibration however, the uncertainty at site depends on the prevailing actual environmental conditions and master equipment used.